5,661 research outputs found

    Miniaturized Circular-Waveguide Probe Antennas Using Metamaterial Liners

    Full text link
    This work presents the radiation performance of open-ended circular-waveguide probe antennas that have been miniaturized by the introduction of thin metamaterial liners. The liners introduce an HE11_{11} mode well below the natural cutoff frequency, which provides substantial gain improvements over a similarly sized waveguide probe. A new feeding arrangement employing a shielded-loop source embedded inside the miniaturized waveguide is developed to efficiently excite the HE11_{11} mode and avoid the excitation of other modes across the frequency reduced band while maintaining the antenna's compactness. A metamaterial-lined circular-waveguide probe antenna operating over 42% below its natural cutoff frequency is designed to provide a radiation efficiency of up to 28.8%. A simple, printed-circuit implementation of the metamaterial liner based on inductively loaded wires is proposed and its dispersion features are discussed.Comment: The manuscript has been revised for publication as a 6 page communication in the IEEE Transactions on Antennas and Propagation. This included a reduction of material in the theory section, removal of all discussion on anisotropic theory, and introduction of a novel excitation sourc

    Analog-digital simulation of transient-induced logic errors and upset susceptibility of an advanced control system

    Get PDF
    A simulation study is described which predicts the susceptibility of an advanced control system to electrical transients resulting in logic errors, latched errors, error propagation, and digital upset. The system is based on a custom-designed microprocessor and it incorporates fault-tolerant techniques. The system under test and the method to perform the transient injection experiment are described. Results for 2100 transient injections are analyzed and classified according to charge level, type of error, and location of injection

    Radiation reaction in the 2.5PN waveform from inspiralling binaries in circular orbits

    Full text link
    In this Comment we compute the contributions of the radiation reaction force in the 2.5 post-Newtonian (PN) gravitational wave polarizations for compact binaries in circular orbits. (i) We point out and correct an inconsistency in the derivation of Arun, Blanchet, Iyer, and Qusailah. (ii) We prove that all contributions from radiation reaction in the 2.5PN waveform are actually negligible since they can be absorbed into a modification of the orbital phase at the 5PN order.Comment: 7 pages, no figures, submitted to CQ

    Fission-fusion dynamics and group-size dependent composition in heterogeneous populations

    Full text link
    Many animal groups are heterogeneous and may even consist of individuals of different species, called mixed-species flocks. Mathematical and computational models of collective animal movement behaviour, however, typically assume that groups and populations consist of identical individuals. In this paper, using the mathematical framework of the coagulation-fragmentation process, we develop and analyse a model of merge and split group dynamics, also called fission-fusion dynamics, for heterogeneous populations that contain two types (or species) of individuals. We assume that more heterogeneous groups experience higher split rates than homogeneous groups, forming two daughter groups whose compositions are drawn uniformly from all possible partitions. We analytically derive a master equation for group size and compositions and find mean-field steady-state solutions. We predict that there is a critical group size below which groups are more likely to be homogeneous and contain the abundant type/species. Despite the propensity of heterogeneous groups to split at higher rates, we find that groups are more likely to be heterogeneous but only above the critical group size. Monte-Carlo simulation of the model show excellent agreement with these analytical model results. Thus, our model makes a testable prediction that composition of flocks are group-size dependent and do not merely reflect the population level heterogeneity. We discuss the implications of our results to empirical studies on flocking systems.Comment: 19 pages, 8 figure

    Free-Space Imaging Beyond the Diffraction Limit Using a Veselago-Pendry Transmission-Line Superlens

    Full text link
    Focusing using conventional lenses relies on the collection and interference of propagating waves, but discounts the evanescent waves that decay rapidly from the source. Since these evanescent waves contain the finest details of the source, the image suffers a loss of resolution and is referred to as 'diffraction-limited'. Superlensing is the ability to create an image with fine features beyond the diffraction limit, and can be achieved with a 'Veselago-Pendry' lens made from a metamaterial. Such a Veselago-Pendry superlens for imaging in free space must be stringently designed to restore both propagating and evanescent waves, but meeting these design conditions (isotropic n = epsilon_r = mu_r = -1) has proven difficult and has made its realization elusive. We demonstrate free-space imaging with a resolution over three times better than the diffraction limit at microwave frequencies using a Veselago-Pendry metamaterial superlens based on the negative-refractive-index transmission-line (NRI-TL) approach, which affords precise control over its electromagnetic properties and is also less susceptible to losses than other approaches. A microwave superlens can be particularly useful for illumination and discrimination of closely spaced buried objects over practical distances by way of back-scattering, e.g. in tumour or landmine detection, or for targeted irradiation/hyperthermia.Comment: 19 pages, 7 figures, submitted to IEEE Transactions on Antennas and Propagatio

    Magnetic anomalies in single crystalline ErPd2Si2

    Full text link
    Considering certain interesting features in the previously reported 166Er Moessbauer effect and neutron diffraction data on the polycrystalline form of ErPd2Si2 crystallizing in ThCr2Si2-type tetragonal structure, we have carried out magnetic measurements (1.8 to 300 K) on the single crystalline form of this compound. We observe significant anisotropy in the absolute values of magnetization (indicating that the easy axis is c-axis) as well as in the features due to magnetic ordering in the plot of magnetic susceptibility (chi) versus temperature (T) at low temperatures. The chi(T) data reveal that there is a pseudo-low dimensional magnetic order setting in at 4.8 K, with a three-dimensional antiferromagnetic ordering setting in at a lower temperature (3.8 K). A new finding in the chi(T) data is that, for H//, but not for H//, there is a broad shoulder in the range 8-20 K, indicative of the existence of magnetic correlations above 5 K as well, which could be related to the previously reported slow-relaxation-dominated Moessbauer spectra. Interestingly, the temperature coefficient of electrical resistivity is found to be isotropic; no feature due to magnetic ordering could be detected in the electrical resistivity data at low temperatures, which is attributed to magnetic Brillioun-zone boundary gap effects. The results reveal complex nature of the magnetism of this compound

    Higher signal harmonics, LISA's angular resolution, and dark energy

    Get PDF
    It is generally believed that the angular resolution of the Laser Interferometer Space Antenna (LISA) for binary supermassive black holes (SMBH) will not be good enough to identify the host galaxy or galaxy cluster. This conclusion, based on using only the dominant harmonic of the binary SMBH signal, changes substantially when higher signal harmonics are included in assessing the parameter estimation problem. We show that in a subset of the source parameter space the angular resolution increases by more than a factor of 10, thereby making it possible for LISA to identify the host galaxy/galaxy cluster. Thus, LISA's observation of certain binary SMBH coalescence events could constrain the dark energy equation of state to within a few percent, comparable to the level expected from other dark energy missions.Comment: 15 pages, no figures. Final version to appear in Phys. Rev.

    Probing the non-linear structure of general relativity with black hole binaries

    Get PDF
    Observations of the inspiral of massive binary black holes (BBH) in the Laser Interferometer Space Antenna (LISA) and stellar mass binary black holes in the European Gravitational-Wave Observatory (EGO) offer an unique opportunity to test the non-linear structure of general relativity. For a binary composed of two non-spinning black holes, the non-linear general relativistic effects depend only on the masses of the constituents. In a recent letter, we explored the possibility of a test to determine all the post-Newtonian coefficients in the gravitational wave-phasing. However, mutual covariances dilute the effectiveness of such a test. In this paper, we propose a more powerful test in which the various post-Newtonian coefficients in the gravitational wave phasing are systematically measured by treating three of them as independent parameters and demanding their mutual consistency. LISA (EGO) will observe BBH inspirals with a signal-to-noise ratio of more than 1000 (100) and thereby test the self-consistency of each of the nine post-Newtonian coefficients that have so-far been computed, by measuring the lower order coefficients to a relative accuracy of 105\sim 10^{-5} (respectively, 104\sim 10^{-4}) and the higher order coefficients to a relative accuracy in the range 10410^{-4}-0.1 (respectively, 10310^{-3}-1).Comment: 5 pages, 4 figures. Revised version, accepted for publication in Phys. Rev

    Quality control of molluscan shellfish products

    Get PDF
    Since the molluscan shellfish filter large quantities of water during their feeding process, there are chances of accumulation of toxic heavy metals in their body, if the environment is polluted with toxic metals
    corecore